

$$
\begin{aligned}
& \begin{aligned}
& 80.75 K L \rightarrow L \\
& 1 K L=1000 L \\
& \text { constant } \\
& \text { pK }
\end{aligned} \\
& \frac{75 \mathrm{KK}}{1}\left(\frac{1000 \mathrm{~L}}{1 \mathrm{KK}}\right)=750 \mathrm{~L} \\
& 1.67 \times 10^{9} \mu m \rightarrow k m \quad \begin{array}{l}
\mu=10^{-6} \\
k=10^{3}
\end{array} 10^{9} \\
& \frac{1.67 \times 10^{9} \mathrm{em}}{1}\left(\frac{1 \mathrm{~km}}{1 \times 10^{9} \mathrm{em}}\right)=1.67 \mathrm{~km} \\
& +1.67 \leqq \quad(1.675)(22.3) \\
& =37.3525 \\
& \begin{array}{l}
374 \\
\text { Round to the }
\end{array} \\
& \text { least \#of } \\
& \text { sigfig }
\end{aligned}
$$

$1.67 \times 10^{9} \mathrm{um} \rightarrow \mathrm{Km}$

Def
Trend gown + across
Reason for trend
electronegativity
attraction an atom has for electrons in a bond Down a group \rightarrow electronegativity decraxs b/c there ane more energy levels.
Across a period \rightarrow electronegativity increases b/c more protons (greater nuclear charge) Ionization Energy
Amount of energy needed to remove the outermost electron from an atom

Endo/Exo

Dalton-first atomic theory
Thompson- discovery e^{-} plumpuddingmodel cathode ray tube
Rutherford- gold foil exp $\& \operatorname{chol}_{\text {jo }}$ discover of nucleus
Bohr - planetarymodel * electrons in energy levels

Wave mechanicalmodel \rightarrow orbitals

